Low-Temperature Fabrication of Oxide Composites for Solid-Oxide Fuel Cells

نویسندگان

  • Hongpeng He
  • Yingyi Huang
  • Juleiga Regal
  • Marta Boaro
  • John M. Vohs
  • Raymond J. Gorte
چکیده

Composites of yttria-stabilized zirconia (YSZ) with Sr-doped LaCrO3 (LSC) and Sr-doped LaMnO3 (LSM) were prepared by impregnation of a porous YSZ matrix with aqueous solutions of the appropriate metal salts, followed by sintering to various temperatures. XRD measurements showed that perovskite phases formed after sintering at 1073 K, a temperature well below that at which solid-state reactions with YSZ occur. The conductivities of the LSC–YSZ and LSM–YSZ composites prepared in this way were maximized at a sintering temperature of 1373 K for LSC–YSZ and 1523 K for LSM–YSZ, although reasonable conductivities were achieved at much lower temperatures. The conductivities of the two composites increased much more rapidly with the content of the conductive oxide than has been found with conventional composites formed by mixing and sintering the oxide powders. The implications for using this approach to develop novel electrodes for SOFC applications are discussed. Comments Copyright The American Ceramic Society. Reprinted from Journal of the American Ceramic Society, Volume 87, Issue 3, March 2004, pages 331-336. Publisher URL: http://www.ceramicjournal.org/issues/v87n3/pdf/6414.pdf Author(s) Hongpeng He, Yingyi Huang, Juleiga Regal, Marta Boaro, John M. Vohs, and Raymond J. Gorte This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cbe_papers/11 Low-Temperature Fabrication of Oxide Composites for Solid-Oxide Fuel Cells Hongpeng He, Yingyi Huang, Juleiga Regal, Marta Boaro, John M. Vohs, and Raymond J. Gorte* Department of Chemical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Composites of yttria-stabilized zirconia (YSZ) with Sr-doped LaCrO3 (LSC) and Sr-doped LaMnO3 (LSM) were prepared by impregnation of a porous YSZ matrix with aqueous solutions of the appropriate metal salts, followed by sintering to various temperatures. XRD measurements showed that perovskite phases formed after sintering at 1073 K, a temperature well below that at which solid-state reactions with YSZ occur. The conductivities of the LSC–YSZ and LSM–YSZ composites prepared in this way were maximized at a sintering temperature of 1373 K for LSC–YSZ and 1523 K for LSM–YSZ, although reasonable conductivities were achieved at much lower temperatures. The conductivities of the two composites increased much more rapidly with the content of the conductive oxide than has been found with conventional composites formed by mixing and sintering the oxide powders. The implications for using this approach to develop novel electrodes for SOFC applications are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell

A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials.  The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...

متن کامل

Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell

A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials.  The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...

متن کامل

Lattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell

In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...

متن کامل

Investigation the performance of solid oxide fuel cells and the role of nanotechnology in its construction

Nanotechnology is well used in the development and performance improvement of solid oxide fuel cells (SOFCs). The high operating temperature of SOFCs (700-900 ° C) has led to serious shortcomings in their overall performance and durability. Hence, the high operating temperature has been reduced to the average temperature range of approximately 44-700 Celsius, which has improved performance and ...

متن کامل

Nanostructuring Platinum Nanoparticles on Ni/Ce0.8Gd0.2O2-δ Anode for Low Temperature Solid Oxide Fuel Cell via Single-step Infiltration: A Case Study

With the aim of promoting the Ni/Ce0.8Gd0.2O2-δ (Ni/GDC20) cermet anodic performance of low temperature solid oxide fuel cell (LT-SOFC) [1], nanostructuring platinum nanoparticles on NiO/GDC composite was done by single-step wet-infiltration of hexachloroplatinic acid hexahydrate (H2PtCl6.6H2O) precursor on NiO/GDC20 composite. The anodic polarization resistance was measured using symmetr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016